
Chapter 19

Global Variables Are Evil

• Global variables are memory locations that are directly visible to an entire
software system.

• The problem with using globals is that different parts of the software are
coupled in ways that increase complexity and can lead to subtle bugs.

• Avoid globals whenever possible, and at most use only a handful of globals
in any system.

Contents:

19.1 Chapter overview . 186

19.2 Why are global variables evil? 187
Globals have system-wide visibility, and aren’t quite the same as static vari-
ables. Globals increase coupling between modules, increase risk of bugs
due to interference between modules, and increase risk of data
concurrency problems. Pointers to globals are even more evil.

19.3 Ways to avoid or reduce the risk of globals 191
If optimization forces you into using globals, you’re better off getting a
faster processor. Use the heap or static locals instead of globals if possible.
Hide globals inside objects if possible, and document any globals that can’t
be eliminated or hidden.

19.4 Pitfalls . 196

19.5 For more information 196

See also: Chapter 11. Modularity . 93

Chapter 18. The Cost of Nearly Full Resources 175

Chapter 20. Mutexes and Data Access Concurrency 199

Koopman Better Embedded System Software 185

pk1g
Typewritten Text
Sample Chapter:

19.1. Overview

“Global Variables Are Evil” is a pretty strong statement! Especially for some-
thing that is so prevalent in older embedded system software. But, if you can
build your system without using global variables, you’ll be a lot better off.

Global variables (called globals for short) can be accessed from any part of a
software system, and have a globally visible scope. In its plainest form, a global
variable is accessed directly by name rather than being passed as a parameter. By
way of contrast, non-global variables can only be seen from a particular module
or set of related methods. We’ll show how to recognize global variables in detail
in the following sections.

19.1.1. Importance of avoiding globals

The typical motivation for using global variables is efficiency. But sometimes
globals are used simply because a programmer learned his trade with a
non-scoped language (for example, classical BASIC doesn’t support variable
scoping – all variables are globals). Programmers moving to scoped languages
such as C need to learn new approaches to take full advantage of the scoping and
parameter passing mechanisms available.

The main problem with using global variables is that they create implicit cou-
plings among various pieces of the program (various routines might set or mod-
ify a variable, while several more routines might read it). Those couplings are not
well represented in the software design, and are not explicitly represented in the
implementation language. This type of opaque data coupling among modules re-
sults in difficult to find and hard to understand bugs.

Global variables are evil.

19.1.2. Possible symptoms

You may have problems with global variable use if you observe any of the fol-
lowing when reviewing your implementation:

� More than a handful of variables are defined as globally visible (ideally, there
are none). In C or C++, they are defined outside the scope of any procedure,
so they are visible to all procedures. An indicator is the use of the keyword
extern to access global variables defined outside the scope of your compiled
module.

� Variables are used in a routine that are neither defined locally, nor passed as
parameters. (This is just another way of saying they are global.)

� In assembly language, variables are accessed by label from subroutines or
modules rather than via being passed on the stack as a parameter value. Any
access to a labeled memory location (other than in a single module that has ex-
clusive access to that location) is using a global.

186 Chapter 19

The use of global variables is sometimes defensible. But their usage should be
for a very few, special values, and not a matter of routine. Consider their occa-
sional use a necessary evil.

19.1.3. Risks of using globals

The problem with global variables is that they make programs unnecessarily
complex. That can lead to:

� Bugs caused by hidden coupling between modules. For example, misbehav-
ing code in one place breaks things in another place.

� Bugs created in one module due to a change in a seemingly unrelated second
module. For example, a change to a program that writes a global variable
might break the behavior of code that reads that variable.

It may be necessary to have variables that are global, or at least serve a similar
purpose as global variables. The risk comes from using global variables too
freely, and not using mitigation strategies that are available.

A few globals might be worth the risk if used carefully.

19.2. Why are global variables evil?

Global variables should be avoided to the maximum extent possible. At a high
level, you can think of global variables as analogous to GOTO statements in pro-
gramming languages (this idea dates back at least as far as Wulf (1973)). Most of
us reflexively avoid GOTO statements. It’s odd that we still think globals are
OK.

First, let’s discuss what globals are, then talk about why they should be
avoided.

19.2.1. Definition of global variables

The strict definition of a global variable is a variable that has global scope –
meaning it can be seen everywhere in the entire program. As a practical matter, a
global variable is one that can be accessed outside the scope of the routine that
defines it or accepts it as a parameter. In other words, a global variable seems to
appear out of thin air when reading a particular piece of code. It isn’t defined; it
isn’t in the input parameter list; the reference to it is just there, with no easy way
(other than a text search) of finding out what is going on with it. We will call
non-global variables locals for convenience.

Global variables are defined in a variety of ways depending on the program-
ming language. Here are some examples:

• Assembly: any variable accessed via a label is a global. For example,
LDA MyVar

loads the accumulator from MyVar – and MyVar is a global variable. This

Global Variables Are Evil 187

means that in assembler programs pretty much anything that isn’t a refer-
ence to the stack or a register value is a global.

• Classical BASIC: all variables are global variables. They can be read or
written from anywhere within a program. You may be using a version of
BASIC which supports local variables, but that is a comparatively recent ad-
dition to the language.

• C and C++: all variables defined outside the scope of a procedure: For
example:

int GlobVar; /* this is a global variable */
void MyFunc(void)
{ GlobVar = 5; }

• Java: variables aren’t normally global unless you use a trick, such as declar-
ing variables public static to make them visible outside the declaring object.

It is common to confuse the distinction between dynamic vs. static variables
compared to local vs. global variables. A dynamic variable is one that is automati-
cally created on the stack at run-time, especially in a scoped language such as C or
Java. In these languages, temporary variable storage space is created on the stack
every time a subroutine or method is called, and released when a return opera-
tion is performed. When dynamically allocated variables are released (for exam-
ple, when you do a return from the subroutine that defined them), their value
becomes undefined. Static variables, on the other hand, are given a permanent
address and can be counted upon to retain their values indefinitely without being
thrown away. In C, all variables defined within a routine are dynamic (unless the
static keyword is used), and all variables defined outside any routine are static.

A static variable is not necessarily a global variable. Its memory address alone
doesn’t determine which other modules can see it. A dynamic variable is not nec-
essarily local either, if a pointer to it is passed around. Thus, while it is most com-
mon in C that global variables are also static variables, it is not accurate to say all
static variables are global. Here is an example in C of a variable that is static, but
not global:

int IncrErrCount (void)
{ static int ErrCount = 0; // zeroed at startup

ErrCount += 1; // tally another error
return(ErrCount); // return error count to date

}

The variable ErrCount is permanently allocated, but is local to the subroutine.
No other routine can see (know the address of) that variable. This use of a static
variable is not a problem, because it is only visible inside the defining routine.

188 Chapter 19

19.2.2. Quasi-global variables

In languages that support separate compilation of source code files, there are
quasi-global variables which are visible everywhere inside a single source code file,
but not visible to code in other source code files. In C code this is accomplished
by using the keyword static with a top-level variable, as in this example:

static int GlobVar; /* a quasi-global variable */
void MyFunc(void)
{ GlobVar = 5;
}

The static keyword in this example hides the variable from other compiled
modules, keeping it hidden from most of the system if we assume there are a
large number of different source code files compiled to make the entire system.
A quasi-global variable is better than a completely global variable, because at
least you know that it can’t be accessed from outside the code in the file you’re
looking at. But it still has all the other disadvantages of a global variable, espe-
cially if the file it is used in has a lot of code that references that variable.

Quasi-globals are better than full globals.

Quasi-globals are better than regular globals because their scope (code that
can see them as a variable) is restricted to a single compiled file. But, the bigger
that file is, the more code can see the variable, and thus the higher the risk.

19.2.3. Global variable problem: implicit coupling

Why are globals such a big deal? The main issue is that global variables cause im-
plicit coupling between potentially far-flung pieces of code. Consider, for exam-
ple, a C program that has perhaps 30 different “.c” files written by a half-dozen
different programmers. You have this situation:

file: GlobalDefs.c
…
int TurboFlag = 0; //defined as a global
…

file: PerformanceMonitor.c
…
if(somecondition){TurboFlag=1;} //turbo mode on
…

file: UserInterface.c
…
if(somecondition){TurboFlag=0;} //turbo mode off
…

Global Variables Are Evil 189

file: Compute.c
…
// use TurboFlag to choose fast vs. accurate
if(TurboFlag) { SomethingFast; }
else { SomethingSlow; }
…

In this example, which is representative of how many programs use global op-
erating mode variables, the global variable is defined in one place, changed in
two other places, and used to control program flow in a fourth. For all we know,
there are other places it can be changed too. (A global text search might reveal
those other places, but how can you keep that type of information in your head
for more than one or two global variables in a program?)

Here are some example situations where this approach can get you into trou-
ble:

• You want to know what a global does, or even just its data type. You have to
search for the definition, which could be anywhere. If you are lucky it is in a
file named something like GlobalsDefs.c instead of tucked away someplace
obscure.

• You need to change how the variable works, but have trouble finding all the
places the variable is used. A text search will find all the places in the code it
is used unless there are pointers to it. If you use pointers you’re in for a
tough time, because a text search won’t be enough to find everywhere the
variable is accessed.

• At run-time, something is changing the variable in an unexpected way, and
you don’t know how that is happening. Because the variable could be
changed from anywhere, there is no way to look for routines that have the
variable in their parameter list or otherwise isolate the problem. Solving this
requires a debugger with watchpoint capability, which interrupts execution
when a particular memory address is accessed. But, you have to reproduce
the problem during debugging for this to work, which isn’t always easy to
do.

In other words, the fact that you can access the global from anywhere makes it
difficult to isolate or identify the places where you actually do access it.

A related issue is the spreading of bugs via implicit links through global vari-
ables. If you change code at one place, you have no easy way of knowing what
other parts of the code will be affected. Yes, you can do a text search of every-
where the global is accessed, and hope that no pointers or difficult-to-search-for
references exist. But it is all too easy to get that wrong.

19.2.4. Global variable problem: bugs due to interference

In some small processors where global variables are used for speed, there isn’t
enough RAM for every routine to have its own independent variable space. This

190 Chapter 19

means that programmers map several global variables onto the same RAM
space, and try to keep straight which values are being used at any given time.
Such an approach is just begging to have very nasty bugs, and should be avoided.

If you don’t have a lot of RAM and need to re-use it from one routine to the
next, the stack mechanism built in to many programming languages, such as C, is
a much less risky way to do the same thing. If you only have 128 bits of RAM to
work with, there might not be much you can do. But, if this is the case, see Chap-
ter 18. The Cost of Nearly Full Resources, because what you are doing is increasing
your software development cost (and risk) to save hardware costs, which is very
often the wrong tradeoff to be making.

19.2.5. Global variable problem: lack of mutex

Another popular use for global variables is as a mechanism to pass values from
one process to another. For example, a global variable might be used as a place
for an interrupt service routine to store an input byte until a processing routine
can retrieve it. The reason a global is used is convenience, since an ISR doesn’t
accept parameters. One problem with this approach is that you can’t actually be
sure that the only code that sets the variable is the ISR unless you search the en-
tire code base and verify no other routines do that. A way to mitigate this risk is
to use a quasi-global variable in a file which defines only the ISR and the routine
to which the ISR passes data, restricting the global variable visibility to be within
that file and nowhere else.

More generally, it is common for global variables used to communicate be-
tween processes to have concurrency issues. Using a fully global variable for
communication can almost always be avoided. When it must be done, it is im-
portant to protect that global variable with a mutex to ensure no strange and elu-
sive bugs appear due to concurrency problems. (See Chapter 20. Mutexes and Data
Access Concurrency.)

19.2.6. Pointers to globals

Sometimes you need to find all references to a global to understand or modify a
program. A text search will find all references to a global – but only if there are
no pointers to it. If there are pointers to a global variable passed around, then it is
even more difficult to figure out where the global might be read or written. For-
bidding pointers to globals is the best way to avoid such problems.

Pointers to globals are even more evil.

19.3. Ways to avoid or reduce the risk of globals

Fortunately, there are ways to avoid globals, or at least make them more manage-
able if they simply must be used. Below are some typical approaches. Not all of
these techniques are mutually compatible. So, this should be considered a bag of

Global Variables Are Evil 191

tricks that can be used, rather than a list of good practices that should all be fol-
lowed. Most programs will need more than one of these techniques, depending
on the situation.

19.3.1. Get a more capable processor

In some cases, the reason global variables are used is to speed up program execu-
tion. For example, some processors have page zero operations that provide
shorter instructions and faster access to the first 256 bytes of RAM. Yes, there
are some cases where this savings in speed or size is worth doing. But such situa-
tions are fewer than there used to be. You should consider that using globals in
the first 256 bytes to exploit this feature is likely to significantly increase your
software development costs, just as any other optimization technique that in-
volves exploiting limited hardware resources will. Chapter 18. The Cost of Nearly
Full Resources discusses this in more detail. This technique should be used only on
very large production runs (millions of hardware units manufactured).

If optimization forces you to use globals,

get a better compiler or a faster processor.

Note that if a compiler is smart enough to map variables into page zero for
you, and that complexity is completely hidden from the programmer, and the
compiler doesn’t have bugs that get this mapping wrong, then it is perfectly fine
to use this optimization. We have no problem with using smaller instructions
that run faster! The problem comes when programmers have to spend a lot of
extra effort to do this. This puts them at increased risk of bugs because the opti-
mization requires using risky data structures (globals) instead of less risky data
structures (locals) in source code.

19.3.2. Move the global inside the procedure that needs it

Some globals are created not because they truly need to be global, but because
they need to retain their values across multiple invocations of the procedure that
uses them (in other words, they need to be static). In C++ it is common to use
constructors and destructors to do this sort of thing. But, in C it is a little trickier
to do. One approach in C is to simply move the definition of the global into the
highest level routine that needs it, then pass references to it down into
subroutines.

Use a static local variable instead of a global when possible.

Here’s an example routine that uses a global:

int ErrCount = 0; // initialized to zero at startup

192 Chapter 19

int IncrErrCount (void)
{ ErrCount += 1; // tally another error

return(ErrCount); // accumulated error count
}

But, there is no need to make ErrCount a global if IncrErrCount() is the only
procedure that needs to modify it. Instead, it could be rewritten as:

int IncrErrCount (void)
{ static int ErrCount = 0; // initialized at startup

ErrCount += 1; // tally another error
return(ErrCount); // accumulated error count

}

In this example, ErrCount is only visible to the routine that needs it, so it is no
longer a global variable. The C keyword static is used to tell the compiler to allo-
cate a variable in memory that retains its values between calls to the procedure
rather than making the variable temporary and placing it on the stack. (Note that
in C, the initialization of a static variable happens only once when the program is
first run, not every time the routine is called.)

If IncrErrCount called other routines that needed to know what the value of
ErrCount was, it could pass the value or a pointer to that value down to the
called routines.

19.3.3. Make a shared variable quasi-global instead of global.

If you must use a global variable to share a value across several routines, then a
way to contain the spread of problems is to put only the routines that access that
value into a single source code file, and declare the variable as a quasi-global us-
ing the static keyword. For example:

static int ErrCount = 0; // initialized at startup

int IncrErrCount (void)
{ ErrCount += 1; // tally another error

return(ErrCount); // return error count to date
}

int GetErrCount(void)
{ return(ErrCount); // return error count to date
}

void ClearErrCount(void)
{ ErrCount = 0; // reset error count to zero
}

In this case of defining a top-level global variable (one that is not inside a pro-
cedure), the static keyword means “not visible outside this program file.” So that

Global Variables Are Evil 193

guarantees the variable ErrCount can’t be accessed outside the file it is included
in. This limits the damage, and in C is often a necessary evil.

C++ has the concept of a friend to document what is going on with such
shared variables, and provide stricter control over who sees and who doesn’t see
a shared variable. While using friends involves some of the risks of globals, it’s
far better to use a friend than a fully global variable. You can think of friends as a
more sophisticated version of quasi-globals.

19.3.4. Make the global an object, and provide access methods

If a global variable must be accessed in many places, and there is just no way
around it, then making it a globally visible object rather than an ordinary global
variable may have several advantages.

Make globals into objects rather than directly accessible variables.

If you are using an object oriented language such as C++, then this is rela-
tively easy. But even in a non-OO language such as C, this can be done without
too much trouble. For example, let’s say you want to create a global error coun-
ter along the lines of previous examples. You could do the following:

• Create a separate .c file that only contains one related set of globally visible
data objects and their access routines.

• For each object, use a static definition at the top level. This makes it visible
to all procedures in that .c file, but nowhere else in the program (in other
words, it makes it quasi-global).

• Provide procedure calls to read, write, or otherwise operate on the data.

The net result is that you have a variable that can’t be accessed except via the
access methods you’ve provided. This is a close approximation to how C++
handles objects in many respects. For example, a global count of errors encoun-
tered might have this code in the separate global variables .c file:

static int ErrCount = 0; // initialized at startup

inline int IncrErrCount (void)
{ ErrCount += 1; // tally another error

return(ErrCount); // return error count to date
}

inline int GetErrCount(void)
{ return(ErrCount); // return error count to date
}

inline void ClearErrCount(void)
{ ErrCount = 0; // reset error count to zero
}

194 Chapter 19

The inline keyword is used to encourage the compiler to put the code to ac-
cess the variable in-line with other code, eliminating the overhead of a procedure
call. With a good optimizing compiler, this code will compile with the same
runtime speed as an ordinary global variable. (This can also be true for C++ ap-
proaches that put the global variable into an object with access methods.)

While not as syntactically clean as it would be in C++, the above code gets the
job done. A more C++-like notation might be to call the procedures:
ErrCount_Incr, ErrCount_Get, and ErrCount_Clear, but the naming is a matter
of choice for your style guidelines.

The obvious question is, why would we want to go to all the trouble of defin-
ing the access routines when we could have just defined a global and been done
with it? Here are some reasons. You may or may not find them compelling, but
they are worth considering.

• It makes it impossible to get a pointer to the variable. Because the
pointer is hidden behind the access functions (it is declared static at the top
level), it is impossible for any module outside the definition file to see it.
Thus, it is impossible to point to. This could be helpful, because it makes it
much more difficult for a developer to violate a no pointer to globals rule.
With this approach, identifying places in the code that access the variable
still requires a text search for the name of the access method. But, at least
there are no pointers to worry about.

• It provides debugging hooks. Debugging of problems with globals can
be difficult because they can be accessed from anywhere. Debugging via ad-
dress matching on loads and stores for globals (watch-point debugging
based on the global variable address) isn’t always possible, and needs
on-CPU hardware support or an emulator to work well. With the access
methods we’ve described, it’s impossible to access the variable without go-
ing through a defined access method. The access routines can therefore be
instrumented to show what is happening. Debugging via breakpoints based
on program counter values (with a breakpoint at the start of an access rou-
tine) is a universal debugger capability. If you don’t have a debugger at all,
you can at least put print statements in the access methods to see what’s
happening with the variable by modifying only one spot in the software
system.

• It simplifies concurrency management. A tricky part of globals is mak-
ing sure that multiple concurrent tasks accessing them don’t have problems
with sharing. A mutex or other locking mechanism is used (see Chapter 20.
Mutexes and Data Access Concurrency). With this method you only need to put
the mutex logic in one place – the access procedure. With other methods,
you need to make sure you get the mutex right every place the variable is
touched, which gives many more places to verify, and many more chances

Global Variables Are Evil 195

to make a mistake (most commonly, the mistake of forgetting to use the
mutex).

19.3.5. If you must use a global, document it well

For whatever reason, you might find you still must have a global variable in your
program. Hopefully you won’t need many! But for those you need, here are
some things you can do to reduce the chance of having problems.

• Use a naming convention to make it easier to recognize all globals in a text
search.

• If the global is shared by concurrent tasks, use a naming convention to re-
mind developers that it must be protected by a mutex or lock.

• Don’t allow taking a pointer to a global.

• Use comments where a global is defined to keep an up-to-date list of every-
where it is used, and any rules for manipulating the variable. It shouldn’t be
too hard to have automated tools generate this list dynamically, if you have
access to all the source code.

If you still have to use a global, spend a lot of effort making it as

clean and well documented as possible.

19.4. Pitfalls

Globals are evil, and it’s better to avoid using them. As with any idea, avoiding
globals can be carried to absurd extremes, but the usual pitfall is using too many
globals instead of too few.

19.5. For more information

19.5.1. General topic search keywords

• Global variable

• Scoping

19.5.2. Recommended reading

Ganssle, J., “A pox on globals,” Embedded System Design, October 2006, pp. 57-60.
Jack hates globals about as much as we do. Here’s another take on the same
topic.

Jones, N., “Efficient C code for eight-bit MCUs,” Embedded Systems Programming,
November 1998, pp. 66-83.
This article discusses a number of efficiency techniques, including using static
non-global variables instead of globals.

196 Chapter 19

19.5.3. Additional reading

Wulf, W. & Shaw, M., “Global variables considered harmful,” ACM SIGPLAN
Notices, February 1973, pp. 28-34
An early paper explaining why global variables are bad.

Global Variables Are Evil 197

Koopman Better Embedded System Software v

Topic Quick Reference
1. Introduction . 1

SOFTWARE DEVELOPMENT PROCESS
2. Written Development Plan . 9
3. How Much Paper Is Enough? . 17
4. How Much Paper Is Too Much? 29

REQUIREMENTS & ARCHITECTURE
5. Written Requirements . 37
6. Measurable Requirements . 47
7. Tracing Requirements To Test . 57
8. Non-Functional Requirements . 65
9. Requirement churn . 77
10. Software Architecture . 85
11. Modularity . 93

DESIGN
12. Software Design. 107
13. Statecharts and Modes . 117
14. Real Time . 125
15. User Interface Design . 147

IMPLEMENTATION
16. How Much Assembly Language Is Enough? 157
17. Coding Style . 167
18. The Cost of Nearly Full Resources 175
19. Global Variables Are Evil . 185
20. Mutexes and Data Access Concurrency 199

VERIFICATION & VALIDATION
21. Static Checking and Compiler Warnings 219
22. Peer Reviews . 227
23. Testing and Test Plans . 237
24. Issue Tracking & Analysis. 255
25. Run-Time Error Logs . 265

CRITICAL SYSTEM PROPERTIES
26. Dependability . 275
27. Security . 295
28. Safety . 315
29. Watchdog Timers . 333
30. System Reset . 341

Copyright © 2010 by Philip Koopman
All rights reserved.
No part of this publication may be reproduced or transmitted in any form or

by any means, including photocopy, scanning, recording, or any information
storage and retrieval system, without permission in writing from the copyright
holder.

ISBN-13: 978-0-9844490-0-2

ISBN-10: 0-9844490-0-0

Drumnadrochit Education LLC

Printed on acid-free paper in the United States of America
2010 2011 2012 2013 2014 2015 9 8 7 6 5 4 3 2 1

Warranty and disclaimers:
THE SOFTWARE LISTINGS AND OTHER INFORMATION IN THIS

BOOK ARE PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR PUBLISHER BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, CONSEQUENTIAL, OR
OTHER DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. THE INFORMATION AND SOFTWARE LISTINGS
IN THIS BOOK ARE NOT INTENDED FOR USE IN LIFE CRITICAL
OR OTHER CRITICAL APPLICATIONS. BY OPENING THIS BOOK,
THE READER AGREES TO THESE TERMS AND ACCEPTS SOLE
RESPONSIBILITY FOR ANY AND ALL DIRECT AND INDIRECT USES
OF ITS CONTENTS.

pk1g
Typewritten Text

pk1g
Typewritten Text

pk1g
Typewritten Text
Order the book at: http://www.koopman.us

http://www.koopman.us
pk1g
Typewritten Text
Permission granted for non-commercial distribution
of this sample chapter. May not be resold or incorporated
in any other published work.

